Chemistry Letters 1995

Practical and Selective Method for Preparation of Cp2HfRCI and Cp2HfRR'

Tamotsu Takahashi,* Yasushi Nishihara, and Toyohisa Ishida^l
Coordination Chemistry Laboratories, Institute for Molecular Science and the Graduate University of Advanced Studies,
Myodaiji, Okazaki 444

(Received October 14, 1994)

Practical method for preparation of Cp₂HfRCl and Cp₂HfRR' has been investigated. Mono(alkyl)hafnocene chloride complexes were selectively prepared by the following methods; (i) a reaction of Cp₂HfR(OMe) with MeCOCl and (ii) a reaction of Cp₂HfCl₂ with an excess of R₃Al. Treatment of Cp₂HfRCl with R'₃Al led to an alkyl exchange reaction to form Cp₂HfR'Cl. Mono(alkyl)hafnocene complexes prepared by (ii) reacted with one equiv of R'Li to give Cp₂HfRR' (R \neq R') with a high selectivity.

Recently we have reported the highly selective catalytic and stoichiometric reactions of zirconocene-ethylene complexes with alkenes.² In these reactions dialkylzirconocene derivatives played a very important role for the high selectivities.² In order to investigate the origin of the selectivity, selective preparation of dialkylzirconocenes is necessary. However, the usual dialkylzirconocenes were unstable at room temperature and it was difficult to prepare in situ the usual dialkylzirconocenes which have different two alkyl groups with a high purity.³ Therefore we turned our attention from dialkylzirconocene to more stable dialkylhafnocene. Surprisingly, however, there is no practical and selective preparation method reported so far for useful Cp2HfRCl (1) and Cp2HfRR' (2). Although some papers have shown the formation of 1 or 2,4 the desired complexes have been formed either as a mixture of several complexes or with special bulky alkyl groups or in low yields. In this paper we would like to report some practical and selective preparation methods of 1 and 2.

$$\begin{array}{c} \text{excess} \\ \text{MeOH} \\ \text{Cp}_2\text{HfR}_2 \end{array} \xrightarrow{\text{MeCOCI}} \begin{array}{c} \text{MeCOCI} \\ \\ \text{Cp}_2\text{HfR(OMe)} \end{array} \xrightarrow{\text{Cp}_2\text{HfRCI}} \begin{array}{c} \text{(1)} \\ \text{(1)} \end{array}$$

Recently we reported quantitative formation of mono(alkyl)-alkoxyhafnocene complexes $Cp_2HfR(OMe)$ (3) by the reaction of Cp_2HfR_2 with an excess of MeOH.⁵ Since the yield of this complex was excellent, we tried to convert this complex into 1. When 3 (R = Buⁿ) was treated with 1 equiv of MeCOCl at room temperature, 1 (R = Buⁿ) was formed in 80% yield. Zirconocene analog $Cp_2ZrBu^n(OMe)$ did not afford the corresponding complex Cp_2ZrBu^nCl cleanly.

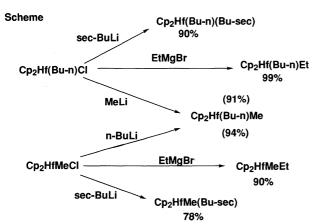
It is well known that treatment of Cp_2ZrCl_2 with Et_3Al gives ethylene bridged di-zirconium complex, $[Cp_2Zr(ClAlEt_2Cl)]_2(\mu-CH_2CH_2).^6$ Interestingly, in contrast, the reaction of Cp_2HfCl_2 with an excess of Et_3Al in hexane selectively afforded $Cp_2HfEtCl$ in 89% yield. No formation of an ethylene bridged di-hafnium complex was detected. This method could be used for complexes containing other n-alkyl groups such as Pr and Bu^n groups. These mono(alkyl)hafnocene chlorides 1 were cleanly obtained in 76-89% yields (by NMR). It is noteworthy that Cp_2HfRCl (R =

Et, Pr^n , or Bu^n) were inert toward another equiv of R_3Al . This inertness is very attractive to prepare mono(alkyl)hafnocene compounds selectively. The formation of dialkylhafnocene Cp_2HfR_2 was not observed. The complexes 1 ($R=Et, Pr^n$, or Bu^n) were precipitated as micro crystals at -40°C in hexane. Filtration provided pure compounds in 73, 65, and 55% yields for Et, Pr^n , and Bu^n , respectively.

$$Cp_2HfCl_2 \xrightarrow{R_3Al} Cp_2HfRCl \xrightarrow{\#R_3Al} Cp_2HfR_2 \qquad (2)$$

R = Et: 89%(73%); Pr-n: 76%(65%); Bu-n: 89%(55%)

Methyl-analog Cp₂HfMeCl was not cleanly formed by this method using Me₃Al. However, reaction of 1 with a different alkylaluminum R'₃Al led to an alkyl exchange reaction to form Cp₂HfR'Cl. Therefore the reaction of Cp₂HfRCl with Me₃Al could provide Cp₂HfMeCl. In fact the reaction of Cp₂HfEtCl with an excess (5 equiv) of Me₃Al gave Cp₂HfMeCl in 85% isolated yield. When Cp₂HfEtCl was treated with one equiv of Me₃Al in C₆D₆ and hexane, a mixture of Cp₂HfMeCl and Cp₂HfEtCl was obtained in a ratio of 1.6:1. Similar alkyl group exchange of dialkyl-hafnocene with trialkylaluminum has been reported. 4d


Cp₂HfEtCl
$$\xrightarrow{5 \text{ eq. Me}_3\text{Al}}$$
 Cp₂HfMeCl (3)
85% Isolated yield

Cp₂HfMeCl obtained by this alkyl exchange method from Cp₂HfEtCl contained 2% of Cp₂HfEtCl as an impurity after crystallization at -40°C. In order to prepare the pure Cp₂HfMeCl, we tried the reaction of oxo-bridged complex with Me₃Al as reported for a zirconium case.⁸ This reaction smoothly proceeded to give pure Cp₂HfMeCl in 76% isolated yield.⁹ Interestingly, this method did not give 1 (R = Et, Pr, or Buⁿ) cleanly, when other alkylaluminum compounds such as Et₃Al, Pr₃Al and Buⁿ₃Al were used.

$$\begin{array}{c|c} Cl & Cl \\ Cp_2Hf & & Me_3Al \\ O & & Isolated yield 76\% \end{array}$$

Thus mono(alkyl)hafnocene chlorides 1 were selectively obtained. Mono(alkyl)hafnocene chlorides reacted with one equiv of R'Li to give Cp₂HfRR' $(R \neq R')^{10}$ selectively as shown in the scheme.

160 Chemistry Letters 1995

Dialkylhafnocene complexes 2 such as Cp_2HfBu^nEt thus prepared were very pure. The ^{13}C NMR spectrum of Cp_2HfBu^nEt prepared *in situ* is shown in Figure. This spectrum was taken in C_6D_6 just after evaporation of the solvent without any purification. The complex Cp_2HfBu^nEt obtained here was stable in THF at room temperature. Disproportionation to produce $Cp_2HfBu^n_2$ or Cp_2HfEt_2 was not observed.

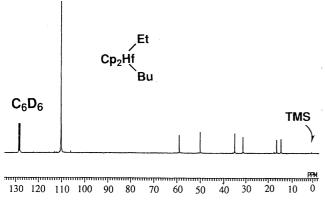


Figure. ¹³C NMR spectrum of Cp₂HfBuⁿEt prepared in situ.

References and Notes

- 1 IMS fellow (1994-1995).
- T. Takahashi, M. Murakami, M. Kunishige, M. Saburi, Y. Uchida, K. Kozawa, T. Uchida, D. R. Swanson and E. Negishi, Chem. Lett., 1989, 761.; D. R. Swanson, C. J. Rousset, E. Negishi, T. Takahashi, T. Seki, M. Saburi and Y. Uchida, J. Org. Chem., 54, 3521 (1989).; T. Takahashi, Y. Nitto, T. Seki, M. Saburi and E. Negishi, Chem. Lett., 1990, 2259.; T. Takahashi, N. Suzuki, M. Kageyama, Y. Nitto, M. Saburi and E. Negishi, Chem. Lett., 1991, 1579.; T. Takahashi, T. Seki, Y. Nitto, M. Saburi, C. J. Rousset and E. Negishi, J. Am. Chem. Soc., 113, 6266 (1991).
- 3 E. Negishi, T. Nguyen, J. P. Maye, D. Choueiri, D. R. Swanson, N. Suzuki and T. Takahashi, *Chem. Lett.*, 1992, 2367
- 4 (a)D. J. Cardin, M. F. Lappert, C. L. Raston, P. I. Riley, in "Comprehensive Organometallic Chemistry" G. Wilkinson, F. G. A. Stone, E. W. Abel Eds., Pergamon Press Oxford, 3, 549 (1982).; (b)D. J. Cardin, M. F. Lappert, C. L. Raston, in "Chemistry of Organo-zirconium and -Hafnium Compounds" Ellis Horwood Ltd., New York (1982) and references therein.; (c) G. Erker, R. Schlund and C. Kruger, Organometallics 8, 2349 (1989).; (d) A. R. Siedle, R. A.

- Newmark, J. N. Schroepfer, and P. A. Lyon, *Organometallics*, **10**, 400 (1991). Formation of Cp₂HfRCl has been suggested in the hydrohafnation reaction of alkenes. However, purification and characterization of Cp₂HfRCl has not been reported. See G.A.Tolstikov, M.S.Miftakhov, and F.A.Valeev., Izvest. Akad. Nauk SSSR Ser. Khim., 1979, 2576. Hydrohafnation reaction of ethylene with (MeCp)₂HfHCl afforded a mixture of monoethyl and diethyl complexes.^{4c}
- 5 T. Takahashi, K. Aoyagi, R. Hara and N. Suzuki, *Chem. Lett.*, **1992**, 1693.
- 6 H. Sinn and E. Kolk, J. Organomet. Chem., 6, 373 (1966).
- R = Et: 1 H NMR (C₆D₆, Me₄Si) δ 0.86 (q, J = 8Hz, 2H) 1.64 (t, J = 8Hz, 3H) 5.74 (s, 10H); 13 C NMR (C₆D₆, Me₄Si) δ 17.90, 46.68, 111.66. Anal. Calcd.for C₁₂H₁₅ClHf C:38.62, H:4.06, Cl:9.50. Found C:38.28, H:3.90, Cl:9.68.; R = Pr: 1 H NMR (C₆D₆, Me₄Si) δ 0.79-0.82 (m, 2H), 1.11 (t, J = 7Hz, 3H), 1.59-1.73 (m, 2H), 5.73 (s, 10H). 13 C NMR (C₆D₆, Me₄Si) δ 22.66, 27.51, 58.71, 111.61. Anal. Calcd.for C₁₃H₁₇ClHf C:40.32, H:4.43, Cl:9.15. Found C:40.25, H:4.38, Cl:9.00.; R = Buⁿ: 1 H NMR (C₆D₆, Me₄Si) δ 0.81-0.87 (m, 2H), 1.04 (t, J = 7Hz, 3H), 1.41 (tq, J = 7Hz, 7Hz, 2H), 1.57-1.69 (m, 2H), 5.73 (s, 10H). 13 C NMR (C₆D₆, Me₄Si) δ 14.20, 30.76, 36.42, 55.35, 111.64. Anal. Calcd. for C₁₄H₁₉ClHf C:41.90, H:4.78, Cl:8.83. Found C:41.73, H:4.67, Cl:8.98.
- 8 P.C.Wailes, H.Weigold and A.P. Bell, *J. Organomet. Chem.*, 33, 181 (1971).
- 9 ¹H NMR (C₆D₆, Me₄Si) δ 0.26(s, 3H), 5.68 (s, 10H); ¹³C NMR (C₆D₆, Me₄Si) δ 33.84, 111.70. Anal. Calcd. for C₁₁H₁₃ClHf C:36.78, H:3.66, Cl:9.87. Found C:36.70, H:3.69, Cl:9.79.
- 10 Cp₂Hf(Bu-n)Et: 1 H NMR (C₆D₆, Me₄Si) δ : 0.10-0.18 (m, 4H), 1.03 (t, J = 7 Hz, 3H), 1.46 (t, J = 8 Hz, 2H), 1.34-1.49 (m, 4H), 5.66 (s, 10H). 13 C NMR (C₆D₆, Me₄Si) δ : 14.20, 16.06, 31.07, 34.82, 49.76, 58.69, 109.88.; $Cp_2Hf(Bu-n)(Bu-sec)$: ¹H NMR (C₆D₆, Me₄Si) δ : 0.12-0.17 (m, 2H), 0.48-0.62 (m, 1H), 0.97 (t, J = 7 Hz, 3H), 1.00 (t, J = 7 Hz, 3H),J = 7 Hz, 3H), 1.17 (d, J = 7 Hz, 3H), 1.23-1.43 (m, 6H), 5.66 (s, 5H), 5.67 (s, 5H). 13 C NMR (C₆D₆, Me₄Si) δ : 14.18, 16.56, 19.66, 30.64, 31.04, 34.74, 58.82, 62.92, 109.87, 109.92.; Cp₂Hf(Bu-n)Me: ¹H NMR (C₆D₆, Me₄Si) δ : -0.34 (s, 3H), 0.12-0.17 (m, 2H), 1.01 (t, J =7 Hz, 3H), 1.29-1.37 (m, 2H), 1.40-1.50 (m, 2H), 5.66 (s, 10H). ¹³C NMR (C_6D_6 , Me_4Si) δ : 14.20, 30.91, 34.86, 36.93, 58.11, 109.79.; $Cp_2HfMeEt$: ¹H NMR (C_6D_6 , Me_4Si) δ : -0.32 (s, 3H), 0.13 (q, J = 8 Hz, 2H), 1.46 (t, J = 8 Hz, 3H), 5.65 (s, 10H). ¹³C NMR (C₆D₆, Me₄Si) δ: 16.15, 36.89, 49.18, 109.86.; Cp₂HfMe(Bu-sec): ¹H NMR (C₆D₆, Me₄Si) δ: -0.31 (s, 3H), 0.61-0.66 (m, 1H), 0.98 (t, J=7 Hz, 3H), 1.18 (d, J = 7 Hz, 3H), 1.21-1.34 (m, 2H), 5.65 (s, 5H), 5.66 (s, 5H). ¹³C NMR (C₆D₆, Me₄Si) δ: 16.46, 19.69, 30.78, 37.36, 62.57, 109.88, 109.92. Some signals assinged to Cp or alkyl carbons of Cp2HfRR' appeared at almost the same chemical shifts as those of Cp_2HfR_2 or Cp₂HfR'₂ in their ¹³C NMR spectra. However, their ¹H NMR spectra indicated that Cp signals were different between them in all cases.